GENERAL EQUATIONS FOR THE CALORIC FUNCTIONS
OF GASES AND LIQUIDS

N. K. Bolotin, A, M., Shelomentsev, UDC 536,71
and Yu, I, Shimanskii

A generalized thermal equation of state is used in deriving equations for the major caloric func-
tions of gases and liquids.

Information on the caloric parameters of gases and liquids is required for many calculations in heat
engineering, physical chemistry, and chemical technology; however, no reasonably accurate general rela-
tionships have been published for the caloric functions of many substances, particularly ones covering wide
ranges in the state parameters. The caloric functions are the internal energy, enthalpy, entropy, and speci-
fic heat; and these can be derived from the thermal equation of state [1, 2].

One determines the differences between the parameters at a specified temperature and specified pres-
sure and the values of the same at the identical temperature but at standard pressure. We have devised a new
form of the principle of corresponding states, which uses the thermodynamic correlation factor 8 [3].

It has been found [4] that this factor 8 has advantages over the correlation factors used by Pitzer, Lider-
sen, and Riedel. First of all, the general relationships derived from this quantity describe the measurements
very closely. Secondly, the normal boiling point T}, the critical temperature T, and the critical pressure
P, which are used to calculate 8, are usually determined with high accuracy. Thirdly, 8 is dependent on the
normal boiling point and on the critical parameters, On the other hand, Pitzer's acentricity factor w is related
only to the reduced saturation vapor pressure at a temperature close to the normal boiling point, while Lider-
sen's critical compressibility coefficient Z¢ and Riedel's factor a are related only to the properties of the
substance in the critical region. The thermodynamic parameters of a gas or liquid should be discussed in
terms of the density in dimensionless form in the development of generalized methods. The critical density
is not usually known with very high precision, and it is not required to calculate 3, so the reduction parameter
for the density in this form of the corresponding-state principle is the density at the point on the surface cor-
responding to the ideal-gas state but having the critical P and T, namely, p* = Pg/RTg. Therefore, the ther-
mal equation of state is put as

F(PR1 TRv PR, ﬁ):O, (1)
where PR = P/Pg, TR = T/Tg, and pg = p/(p*/Z¢) are the reduced pressure, temperature, and density; B =
log (9.8692 Pg)/(Tg/Tp—1), where Pg is in MPa.

The explicit form of (1) for the gas phase has been derived [5] by referring Hirschfelder's equation [1]
to a form containing the dimensionless variables used in (1).

The mean error in determining the density is 0,5-2% for TR = 0.50-10 and PR = 0.001-40, while the maxi-
mum errors are 2-7. The average error increases in the critical region.

The density of the liquid is [6] given by
Prr (PR, TR) = Pro(Pr, TR)— Pro(ORLS) TR) -+ Prs (TR), ()

where PRy is the reduced pressure derived from the equation of state for the gas phase, while PRg is reduced
saturation vapor pressure,

The average error in determining the density is 2-5% for TR = 0.50-0,95 and Pg = 0.001-200.

The thermal equation of state [5, 6] has been used to derive analytic relationships for the corrections
AH to the enthalpy and ACy and ACp to the specific heats in the ideal-gas state, which can be utilized in com-
puter calculations.
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TABLE 1. Values of a;; in (6), (7), and (24)

L
! -1 j 0 1 2 | 3 4
l for (6)
0 326,541 —1057,877 506,483 1180,881 | —972,679
1 —161,248 385,597 395,106 | —1521,434 917,107
2 14,726 12,707 —238,894 422,798 | —213,899
for (T)
0 81,348 —233,388 29,445 390,725 —263,767
1 —51,885 115,053 102,168 388,431 225,504
2 2,199 9,569 —68,776 107,867 —51,281
for (24)
0 59,72363 | —827,48582 4050,671s -—8313,8258 5683,4209
1 1—74,92164 1000,6369 —4744,6394 9513,4965 | —6499,6167
2 30,944836 | —398,0132 1825,107 —3561,3245| 2112,364
3| —4,192988 58,373 —231,338 437,5681 —291,1894

TABLE 2, Coeificients Kjj Appearing in the Equations for the
Caloric Parameters

_ i
i
0 | 1 ] 2 | 3
0 0 88,5-3,12m |-—124,4613,84 m+0,363 m2 44,4--5,22 m
1 0 —313,3+13,42m | 429 —9,84 m — 1,815 m® | —156,9418,92 m
2 0 408,9—21,54 m |—528,8 + 1,98 m 4- 3,63 m? 204,325,444 m
3 5,6—m —237,4+15,3 m 2334+ 15,7m—3,63 m® | —115,6415m
o .
4 | —2,25"%im 47,8—4,06 m 9‘_”.‘1—-27,05—16,18m—|—1,815m2 23,7—3,26 m
2
5 0 0 —8,44 - 4,50 m — 0,363 m? 0

The reduced density is pg = 1 in the low~density region, and one can write the enthalpy as

]
(Ho_.H> Z_Zcf[gg_(ﬂ) ]i%&_ﬁﬁ+1, )
RT Jr ) Tr dTr Jor) PR PrRTR
In the case of a gas for which pg = 1, the integration region is split into two zones:
Pr
oH) (Bt g ([P (), | ZePepy). @
RT Jr RT Jr J 1Tr Tr /°x | P& TrlPr

1
The quantity (H°—H)/RT calculated from (3) is suJstituted into the result of integration with pg = 1.

The equation of state for the low-density range allows one to calculate the density of the saturated vapor
PRy if the saturation vapor pressure PRg is known; from pry and PRs we can readily derive an expression for
the enthalpy of the vapor on the saturation line, and then the Clausius—Clapeyron equation can be used to de-
rive an expression for the enthalpy of the liquid on the saturation line. For that purpose, it is necessary to
know the saturation vapor pressure and the density of the liquid on the saturation line, Although the density
of the saturated vapor can be calculated from the equation of state, more reliable results are obtained if it is
determined in a fashion as independent as that for pry, and PRg. One can use generalized equations derived
within the framework of the new principle of corresponding states by means of the correlation factor 8:

saturation vapor pressure [7],

log Pr = [B + Ao + Ay (Tr — 87 + Ay (Tr— 8)*] (1_%) ,
R

5
8 = By + Bif + B, Byp?, ®
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where By = 0.34154; B; = —0,08934; B, = 0.13317; By = —0.018205; A, = —0,015; A; = 1,397; and A, = 5,813;
density of liquid on saturation line [8],
pLZ
——_.f. = a; BT,
PRL= TR, zcl;o: ,2_0 BT

density of gas on saturation line [8],

Pz,
Pro = 5 PIRT. Z,exp (2 Z a,jﬁ’T‘R) M

i=Q j=0

Table 1 gives the values of the ajj, which allow one to calculate the enthalpy of the liquid via the equation of
state for the latter:

p

R -~
(Bt ([T (S0 o el e e (L Lyt oty
RT Tr 0Tr /ori PR Tr| pr PRL Pro  Pre ) dTr RT

PR

The value for (H°—Hy)/RT is calculated from (3) with pRv replacing pR.

The final equations for the enthalpy differ for each of the regions, as in the case of the equation of state:

I. All TR, pp=1
Ho—H . 2K, | 3K, 2\ bor—bp}
( RT )‘"’Z‘["R( +T2) "”( Tﬁ)] T—bpg + b'p% °

K,=5.5, K, =m—K,, K,=05(—K,—a, +2m), 9
3mz —6m—1 m—3 o ,

b=T"""_"""""__ ¥ , PR =
m3m—1) am—1" "® " PyrT,

7, = 1.2484 —0.33178 -+ 0.03407p% — 0.85767/B; @, = —3 -+ 3.676;
m = 43.164 — 272,73 (Z. ) + 706.63 (Z; 2 — 705.41 (2. )*-

11, TRZ].,pR>1

3
H—H . 2y [ 2 (PR) . Ho—H
__ (j—2) ) 2 QA1) —(f — 2 [W: —W.(1 1
( RT ) Z¢ZTR { ox (1) —( ) [W;(oR) W;( )]}-F( RT ) ’ (10)
=
Q,(pr) = Koj + Kyior + Ko + Ksjp?;» + KMP}Q + Ksjpi ,
! Or
W, (or) = —0.5Ky; — Kyor + KZ:PR Inpg 4 Ks;PR + 0. 5K4ij -+ 0. 3333](5]91?
f =
PR

and SZJ(l) and W i(1) are the values of Qj and W;j for pg = 1; H'—H,)/RT is defined by (9) subject to PR =1;
Table 2 gives the values of the Kjj.

L TR <1, p>1

3
HO____H _ ’ U"—2){ QJ (pR) — Qi(pRL) Y & 2) [W/_ p
( = )_-zc Z:TR - il 1 (08)

j=0
— W3 onl— (—1) (5" — F=l) @1 | 1 22 0 — o) s
o
. oo dP, HO—H,
XET&“’R,@RLHZC@RJ R 4( =7 ) (11)

=0
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R;(prr) =

— K5 + szp%u -+ 2K3i‘°?u,+ 3K4J'p§QL+ 4Ksj915u_
Pre

’

where Qj(or1) and Wj(pRL) are as in (10) subject to the condition pR = PRI (HO—HV)/RT is determined by (9)
subject to pR = PRv; PRss PRLs PRv, dPR¢/dTR, and dor1/dTR are determined by (5)-(7).

In calculating K4y and Ky, one should replace ap, by ay = 27.63—20.3458 + 7.0318%2—0.88278%:

For the specific heat:
I. All TR, PRS 1

(3PR)
— = — 2 K ._{.
(aPR /TR ( Y

0P
oTx

(37 b

IL Tg =1, R > 1

(Cg _ Co
R

)

0Pg
0pr

(

II. TR <1, pp > 1

1z,

20—
dl
“|

dPPs
dTg

dor

/

(

0Pr

0T

i=0

3

>
(E=2)

TRills

dR; (Pr)

3
),, = E(i— 1) T2 [Q; (Pr) — ©; (PRL)1—
R

— 7 (2K pr —~ K3pR)

T3 (12)

1]

(CS — c,,) _
b Ce) =

K, Tr(l1 —b'p})

Z;(1 —bpr + bpa)?’

R

|
)pR-+ SKZ(——TRJF—) 0k +
Tr

PR ]
Z. (1 —bpr + b'PR)

_ Kk (1+L>pa+
rp el )

3

+Z; 2(;‘ — ) (—2TH W o) — W1,

=0

. 2Ky — K,

] (13)
c T%

3
. aP _ -
T4 "R; (pr), (Fff)pRzzu—l)T}e’ ) Q; (pr)-

j=0

3
z 2 (G—1)(—2) TS W, (0r) — W; (0rr)]

=0

0z — or1) {1’ — 1) —2) Qi er) TH

j=0

;Pprr

d
—‘.‘T}QEY—:}?;— —2&

pRU dTR

3
) 7] oz s + 07— e
=0
+ ).
3
)TR: 2 T4 R; (or),

dPre

(—1)
1) TH dTx

] R;{prr) } —2Z,

PRS)%» z (ﬂ

dTg
d2Pp (14)

C?' _ Cvu
dT%

R

] }— Z. o' — R Tr
Pre

(

aPx
dpr

dpre
dTg

3

\1 ; dpP
T(J——l) . Rs ,

—d ® Rior) -+ iTx

=0

d—’i;’pﬁ‘i — 9Kyp5° + 2Ky + 6K pr + 12K 03,
R
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wzhere (C%— CW){R is defined by (12) subject to PR = PRy; PRs» PRL, PRv» dPR¢/dTR, doR1/ATR, doRy/dTR,
d PRs/dTR and d PRI/de{ are defined by (5)-(7). Similarly, one should use oy for the enthalpy of the gas
and a1 for the enthalpy of the liquid.

The following formula converts from Cy to Cp:

(cg_cp):(cg—cv),,z;TR[(a_@)? /(aﬁg) ]+1. (15)
R R px L\oTrIer/ \Opr /Tr
From (9)~(14) we obtain the enthalpy and specific heat for the gas and liquid on the saturation line:
HO—H,, ) 2K, 31(,) Koo ( 2 ) bpro — b'pZ,, ] (16)
STy} o 220y 00 1 —= ) — = "R},
( RT ) =Zc {pR ( TR + T?Q + ?PRU Tl2i 1— prv + b,pgiv
H —H v 1 o APgs (H"—-Hus)
s . — . 1
(———RT ) = Zr: (pRv RL) dTR + RT ( 7)

The enthalpy of the liquid is calculated as the enthalpy of the gas with the addition of the enthalpy difference
arising from the phase transition, which is defined by the Clausius —Clapeyron equation. A more accurate re-
sult is obtained if the enthalpy of the gas is combined with the latent heat of evaporation, which is [9] defined by
L
RT,

= Af (1 — Tg) = A[2.4 4 51.68(1 — Tr) — 199,54 (1—Tg)2 + 490.28(1 — Tr)*— 599.84 (1 — Tr)* + 280.1(1 — T)¥,

(18)
where A = —0,2883 + 0.33713; then
HO— Hy, H, — Hi\ Ho—H,, A H —H
— 5 — 1 — us
( RT ) ( RT +( RT ) T ¢ TRH"( RT ) (19)
The specific heat of the gas is
Co—Cyy ) — 2K o, — Ko,
( R Tk L
Py ( K, ) 1y, Tr(1—0'0%)
—= | =—2[K,+ Ppo +3Ka| —Tr+ —— | 0%, 4+ — Y
(OPR )TR T )R : Tr | ¥ Ze(Y —bpp, 4 D pro)*
9Px _ K}, 1 ) Pro (20)
- - 1 - 3 + 7 v 7 -
(aTR )»R TR Kz( T PR T 2T by, + U6R,)
The specific heat of the liquid is
‘ 3
/Cg"“chs =__z’ ___2dpRU T dPRS__P ' Z' _dp___Rl;\sz{e[‘_zR_o
\———-————-——R Ory dTx R"“—“‘dTR Rs| T c( dTR) ,‘:_‘:l) PrL 5 (0rL)]
, @Prs [ CO—C
—Ze (0} — PR Tr 7 +( R 2 )
3 .
(Eﬁ&) =}] T4 VR, (), (21)
6pR TR
3
' OPg dprr R (-1 dPpgs
— = e TR™'R; + )
(\ 9Tx )DR dTx % R j (PRL) ATx

The analytical expressions for (H°~H)/RT; and (C%—C )R indicate that the error in determing the corrections

for deviation from ideal behavior are on average 2-5% for the enthalpy and specific heat of the gas; these cor-
rections are very small in this case by comparison with the ideal-gas functions.

The integration must be carried through the coexistence curve in the expressions for (H°—H)/RT and
(C%—CV)/R, which introduces considerable computational errors into the final result. Therefore, it is de-
sirable to integrate from the saturation line info the single-phase region for the liquid state (region III), for
which purpose one can use generalized empirical expressions of adequate accuracy for the coexistence curve,

Then we have for the enthalpy

) [ (),
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TABLE 3. Values Derived from (9}, (10), and (22) with Data for the
Pressure Corrections to the Ideal-Gas Enthalpy

‘ Parameter ranges Error, % No.of Ref
Compoun Tx l Py av. | max. points

Methane 0,562—5,2 0,02--22 4,55 8,23 15 12
Methane 1,8 0,75—-3,0 7,73 8,85 5 13
Propane 0,84—1,6 { 0,02—14 2,30 5,16 12 12
Propane 0,54—1t,5 | 0,32--3,2 4,53 8,90 30 14
Pro 0,99—1,3 | 0,32—1,6 4,63 9,54 8 15
Isol tane 1,34 0,27—4,2 | 2,06 2,79 5 12
n-Pentane 0,78—1,3 0,40—2,9 5,35 10,2 20 16
n-Qctane 0,74—0,99 | 0,55—3,9 6,49 9,6 12 16
n-Hexadecane 0,74—0,84 | 0,12—6,8 6,87 .| 11,6 6 16
Propylene 1,0—1,2 0,21--33 3,41 6,9 15 12
Benzene 0,75-—~1,1 0,28--2,0 6,66 13,7 20 16

where

(Hf ) A - | Bl Bbm) o, ey
| _ CH JWR

RT ) PR PRL
j==0

— W, (o)l — (i — Dog! — 0x)) & (m)} +

. i dR
-+ Z (pil pRL dPRL ) ng l)R (pRL) - ZC (pR pRL) Rs

and (H'—Hp,g)/RT is defined by (19).

The calculation for the specific heat is from

( Cg_cy )___(Cg—“cps )+(CP3—CP \) (23)
R R \ R /
The value of (C%—Cpg)/R can be calculated from the following generalized equation [10]:
p P
ct—c SAN
( p— Cus ) N ) a; i (1 — Tr). (24)
R i=—1 j=0

Table 1 gives the values of the ajj for (24).

The equation of state gives the correction
3

(C“EC” >=Z;E(i—1)(f 2 TH W, (o) — W (pro)]

=0

+ Z (og'— PRL) v {(; — (i — 2) Q; (0g,) 4=

]=0
. dpg, dzp
+[2(j-—1)Tg—1) RL | Th—RE dT2 }R (pRL)}
3
. pRL N dRJ (pR) ‘ _ dZPRS
Z(pp! — TR| ——— + Ze(pgi—ox) T , (25)
+ Ze(pg' — )( ) %.‘ R( dog )DRL (ere—px") Tx T

which can then be converted to the correction
{ Coe—Cyp C,.—C, 1 0Pg \? JdP
()= J=zrel (o )/ (o )
R R aTR apR TR

(e ) ] |
0%, | 0T g }DR/(OPR Th pRL'
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TABLE 4, Comparison of Values Calculated from (12), (13), and
{23) with Pressure Corrections for the Ideal-Gas Isobaric Specific

Heat [12)
Parameter ranges Error, % No,of
Compound it

Ta I Pp av max. points
Methane 1,57—5,25 | 0,02--22 12,2 18,7 16
Ethane 1,05—1,65 | 0,02—10 7,27 12,7 12
Propane 0,84—1,63 | 0,02—14 8,53 15,8 18
Isobutane 1,34 0,02—4,1 11,8 17,0 6
Propylene 1,02—1,20 | 0,02—54 11,4 16,6 19
BenzZene 0,66—0,85 | 1,02—11 9,61 12,3 8
Butan-1, 3-diene 0,97 0,11—0,33 9,83 13,4 3
Oxygen 0,52—6,46 | 0,02—20 13,2 20,7 26
Nifrogen 0,63—7,92 | 0,03—30 13,7 21,3 25

The first set of partial derivatives within the curly brackets may be derived from (14), while the second can
be derived from (21).

This method of calculating the enthalpy and specific heat of the liquid provides much higher accuracy,
and the generalized relationships apply for wide ranges in the state parameters. Tables 3 and 4 compare the
calculated values with measured ones for TR = 0,5-8 and pressures up to PR = 50. The thermal equation of
state can also be used to calculate the fugacity f and entropy S for all three regions, The final expressions for
the fugacity take the form:

I ALl TR gp =1

f ’ Ko Ki\ 1
In =—Z:| 2 —0 4 4 1,5K.02 (1 — —
P, [pR(TR+T§)+ Koo Ti)]
bp,__b'p2
___i_i,‘ +1InpRTg) —0,5In(1—bpy + b'p3) + Kytan™* (K) + Kytan™ (Ko, — Ky) — In Zi» (26)
I —bpp -+ b'pd

where the values of Ky, K, Kj,b,and b' are calculated as for the enthalpy and specific heat, and K; = b/(4b'—
b%Y? and K, = 2b'/(4b' —b%*/2,

IIL. TR =1, pRr>1

3
f_ (-2 [ S (0g) ) —W. gt
L ZCETR [——pR — Q1)+ W, (00 W,(l)] pnde, @7

c

c =0

where Inf/ P¢ is defined by (26) with pR = 1; Qj(pR), SZj @, Wj(eRr), and Wj(l) are the same functions as for the
enthalpy and specific heat.

IIl. Tg<1, pg > 1

3
) | )

c

+ W, (00 — W (pRL>] + !nl;;—, (28)

=0 < pR RL c
where Inf,/P, is defined by (26) subject to pR = PRy-.
The expressions for the enthalpy and fugacity readily give the entropy:

(5";5):(_”_"1;}'1 )+1n7f_+1npc. 29)

/ [

The calculations require a knowledge of the normal boiling point Ty, the critical femperature T,, and the
critical pressure P¢, as well as of the ideal-gas functions.

Therefore, the eguation of state previously derived has been used in generalized analytic expressions for
the enthalpy, fugacity, and specific heats Cy and Cp for pure nonpolar substances; the accuracy of these equa-
tions is such as to make them suitable for engineering and technological calculations. The expressions can be
extended to polar substances by applying appropriate corrections to the thermodynamic correlation factor g, In
the case of a mixture, one should use the pseudocritical temperature and pressure instead of the true T, and
P, for the individual substances [4].
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NOTATION

is the enthalpy;

is the entropy;

is the specific heat at constant volume;
is the specific heat at constant pressure;
is the fugacity;

is the latent heat of vaporization;

is the density;

is the pressure;

is the temperature;

is the thermodynamic correlation factor;
is the acentric factor;

is the critical coefficient of compressibility;
are the equation parameters;

is the universal gas content,

<

'—]"Ubt“"“'UOOmm

MNNE ™
0o~ 0
]
-

Indices

is the normal boiling point;
is the critical point;

is the reduced value;

is the gas;

is the liquid;

is the saturation line;

is the ideal 1 gas state;

is the value for pg = 1.

RoOoWBH<HO o
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